POSTERS

WP01- Proteogenomics WO02-001 A proteogenomics approach to reveal molecular mechanisms of COPD Peter Horvatovich, University of Groningen, UMCG, Department of Pathology and Medical Biology, Netherlands WO02-002 Launch of MissingProteinPedia: Accelerating Discovery of the Human Proteome Project's "Missing Proteins" Mark S Baker, Macquarie University, Australia WO02-003 Proteogenomics of human cancer cell lines: coding variants identified by shotgun proteomics Sergei Moshkovskii, Institute of Biomedical Chemistry, Russia WO02-004 Proteogenomic profiling of neoantigens for personalized cancer immunotherapy Koji Ueda, Japanese Foundation for Cancer Research, Japan WO02-005 Missing genes and supplementary tissues in the Human Protein Atlas Evelina Sjostedt, Kth - Royal Institute of Technology, Sweden WP01-001 Identification of Proteomic and Proteogenomic Biomarkers of Prostate Cancer in Seminal Plasma Andrei Drabovich, Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada WP01-002 Search Pipeline of Single Amino Acid Variants using neXtProt Database. Heeyoun Hwang, Biomedical Omics Group, Korea Basic Science Institute, South Korea WP01-003 Proteogenomic approaches to discovery of alternatively spliced proteins in hepatocellular carcinoma cell lines Seul-Ki Jeong, Yonsei Proteome Research Center, South Korea WP01-004 Multiplexed Mass Spectrometric Screening of EGFR Mutation in Non-small-cell Lung Cancer Chi-Ting Lai, Institute of Chemistry, Academia Sinica, Taipei, Taiwan WP01-005 Protein expression landscape of mouse embryos during pre-implantation development Lujian Liao, Ecnu, China WP01-006 Have small proteins been overlooked? A proteogenomics approach using ribosome profiling, MS and bioinformation Volodimir Olexiouk, University of Ghent, Belgium WP01-007 A comprehensive proteogenomic workflow reveals novel insights into leukemogenesis. Jarrod Sandow, The Walter & Eliza Hall Institute, Australia WP01-008 Proteogenomic Monitoring and Assessment of Increased Thermogenesis In response to β-Adrenergic Signaling in Ahnak Deficiency Jawon Seo, Seoul National University, South Korea

WP01-009

proBAMsuite: a bioinformatics framework for genome-based representation and analysis of proteomics data Xiaojing Wang, Vanderbilt University Medical Center, United States

WP01-010

GAPP: a proteogenomic software for genome annotation and global profiling of posttranslational modifications in prokaryotes

Ming-Kun Yang, Institute of Hydrobiology, Chinese Academy of Sciences, China

WP01-011

Identification for protein-level evidence of genomic variants in cancer cells using new proteogenomic approach Jeonghun Yeom, Department of Biological Chemistry, Korea University of Science and Technology, South Korea WP01-012

Proteogenomic Monitoring and Assessment of Increased Thermogenesis In response to β-Adrenergic Signaling in Ahnak Deficiency

Junehyeong Yim, Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Scienc, South Korea

WP01-013

A rigorous proteogenomics workflow to discover functional novel-coding loci and single amino acid variants Yafeng Zhu, Karolinska Institutet, Sweden

WP02- Multiomics for Precision Medicine and Systems Biology

WP02-001

Human Personal Omics Profiling (hPOP)

Sara Ahadi, Stanford University, United States

WP02-002

Monitoring oxidative stress and progression to cell death: from secretome to blood diagnosis

Sandra I. Anjo, CNC - Center for Neuroscience and Cell Biology – University of Coimbra, Portugal

WP02-003

Meta-analysis of omics profiling to reveal translational regulation of chronic hypoxia stress in colon cancer cells Jeng-Ting Chen, Graduate Institute of Biomedical Sciences, Chang Gung University, Taiwan WP02-004

Extracellular Vesicles - A novel class of biomarkers

Fouzi El Magraoui, Leibniz-Institut Für Analytische Wissenschaften – ISAS - e.V., Germany

WP02-005

Integrative Multi-Omic Analysis of a Single Immune Cell Type

Min-Sik Kim, Kyung Hee University, South Korea

WP02-006

The Dynamic Responses of Gene Expression in Meiosis I prophase of Mouse Spermatocytes

Qidan Li, BGI-SHENZHEN, China

WP02-007

Towards an in-depth overview about increasing arginine production in C. glutamicum by rational strain design

using metabolomics and proteomics

Moon Liao, Bruker Daltonics, Taiwan

WP02-008

Quantitative Proteomics and Whole Transcriptomics Sequencing of Progeria-derived Cells Point to a Key Role of

IGF Signaling Pathway in Premature Aging

Jesús Mateos, Cell Therapy and Reg Med Group, INIBIC- SERGAS. Medicine Dept UDC, A Coruña, Spain

WP02-009

Transcriptomic and proteomic verification of predicted scheme of ATRA-induced HL60 cell line differentiation Svetlana Novikova, Institute of Biomedical Chemistry, Russia

WP02-010

THE RELATIONSHIP BETWEEN URINE PEPTIDOME AND PROTEIN MISFOLDING DURING PREECLAMSIA

Igor Popov, Moscow Institute of Physics and Technology, Russia

WP02-011

Diversity of HNF4A function in regulating growth and invasion of HCC

Zhao-Yu Qin, Fudan University, China

WP02-012

Towards spatially resolved, multiplexed (up to 800 plex) digital characterization of protein and mRNA

abundance in tissue

Niroshan Ramachandran, Nanostring Technologies, United States

WP02-013

Proteomics e-learning and outreach initiatives: An effort from Indian proteomics community

Panga Jaipal Reddy, Indian Institute of Technology Bombay, India

WP02-014

Proteome and transcriptome analysis of retinoic acid-induced differentiation of human leukemia HL-60 cells Olga Tikhonova, Institute of Biomedical Chemistry, Russia

WP02-015

A Systems Biology Approach to Dissect Acetylation-dependent Cancer Vulnerabilities

Dijana Vitko, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria WP02-016

Lipidomic Analysis of Risk Factors for Chronic Total Occlusions after Percutaneous Coronary Intervention

Zhenxin Wang, Institute of Biomedical Science, Fudan University, China

WP02-017

Systematic Identification of Arsenic-Binding Proteins Reveals that Hexokinase-2 is Inhibited by Arsenic Hainan Zhang, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China WP02-018

Integrative systems biology investigation of Fabry disease

Marco Fernandes, Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow, G12 8TA, UK, United Kingdom

WP03- Cysteine Modifications and Redoxomics

WO03-001

Quantitative proteomics depicts the landscape of cysteine redoxome for nitric oxide-mediated myocardial protection against ischemia-reperfusion injury

Tzu-Ching Meng, Institute of Biological Chemistry, Academia Sinica, Taiwan W003-002

Proteomic analysis of S-sulfhydration by ultrafilter-assisted functional supramolecular polymer capture *Huiming Yuan, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China*

W003-003

WO03-003

TRPC6-dependent S-nitrosylation in Duchenne Muscular Dystrophy

Heaseung Sophia Chung, The Johns Hopkins Medical Institutions, United States

WO03-004

Proteomic and redox proteomic analyses reveal a dual ROS-regulation of glucose uptake in adipocytes

Zhiduan Su, The University of Sydney, Australia

WO03-005

Identification of protein estrogenization as a redox post-translational modification by shot-gun proteomics and activity probe with dimethyl labeling

Shu-Hui Chen, National Cheng Kung University, Taiwan

WP03-001

Multiplexed Isobaric IodoTMT-Switch Approach to Identify and Quantify the Changes in the Cardiac Redox-

Environment

Yi-Yun Chen, Institute of Biological Chemistry, Academia Sinica, Taiwan

WP03-002

Identification of Carbonylated Proteins Caused from Oxidative Stress in Hepatocyte line: Preliminary Study on

Pathology of Fatty Liver Disease

Peerut Chienwichai, Dept. of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Thailand

WP03-003

Thio-tag tip method by using zinc(II)-cyclen-attached agarose beads for enrichment of cysteine-containing

biomolecules Hiroshi Kusamoto, Hiroshima University, Japan

WP03-004

Characterization of total thiol redox status in human fibroblasts using MS-based quantitative approach iodoTMT Kristyna Pimkova, Biomedical Research Center University Hospital Hradec Kralove, Czech Republic

WP04- Imaging Mass Spectrometry

TO04-001

Molecular Imaging of Protein in Tissues Using Ambient Ionization Top-Down Mass Spectrometry

Cheng-Chih Hsu, Department of Chemistry, National Taiwan University, Taiwan

TO04-002

3D MALDI imaging mass spectrometry using next generation technologies - Reconstruction of a molecular imaged epididymis

Charles Pineau, Protim - Inserm U1085 - Irset, 35042 Rennes, France

TO04-003

Localization and Identification of Peptides from Tissue using high-speed MALDI TOF/TOF mass spectrometry Sabu Sahadevan, Bruker Daltonics, France

TO04-004

Monitoring ErbB1 and ErbB2 interaction and activation using engineered cell lines and Duolink proximity

ligation assay by high-content imaging

Tracy Adair-Kirk, MilliporeSigma, United States

TO04-005

Molecular profile discrimination and mapping of skeletal muscle regeneration in rat crush model using MALDI im Anne Denys, Université Paris 13; Sorbonne-Paris-Cité, UMR CNRS 7244, Bobigny, France

WP04-001

Identification Algorithm of Proteins in 2DE gel image Basing on Matlab Development Environment Lijie Wu, Tongji University, China

WP04-002

A new Mass Spectrometry Imaging method for evaluation of drug distribution in the Central Nervous System

Kenichi Watanabe, Department of Biomedical Engineering, Clinical Protein Science & Imaging, Lund University, Swed

WP05- Subcellular, Spatial and Single Cell Proteomics

TO09-001

Quantitative proteome-wide profiling of the retromer cargo landscape

Christina Bell, Department of Cell Biology, Harvard Medical School, United States

TO09-002

Refining the details in the tissue-based map of the human proteome

Cecilia Lindskog, Science for Life Laboratory, Dept. of Immunology Genetics and Pathology, Uppsala University, Swed **T009-003**

Membrane localization of metabolic enzymes and metabolic modulation in a cell division mutant of *Escherichia* coli identified by omics approaches

Yu-Ling Shih, Academia Sinica, Taiwan

тоо9-004

Determining post-translational modifications of nuclear proteins

Ryotaro Ban, Graduate School of Medical Life Science, Yokohama City University, Japan

TO09-005

Single-cell proteome profiling: Innovations in sample preparation

Masaki Wakabayashi, Kyoto University, Japan

WP05-001

Standardization of mitochondrial preparations for the Human Proteome Project.

Mauro Fasano, University of Insubria, Italy

WP05-002

A Mouse Tissue Transcription Factors Atlas

Mingwei Liu, National Center for Protein Sciences, Beijing, China

WP05-003

Subcellular look at asthenozoospermia: Proteomic analysis of human sperm tail in asthenozoospermic patients

Tohid Rezaei Tobraggaleh, Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute, ACECR. Iran

WP05-004

Major mitochondrial machineries are integral part of cell architecture comprising cytoskeleton and nuclear matri Cheng Hsien Yang, Institute of Biochemistry & Molecular Biology, National Yang-Ming University, Taiwan

WP06- Membrane and Extracellular Proteomics

WO04-001

Analysis of plasma membrane proteomes of gastric cancer cells reveals that ASCT2 is involved in cancer

metastasis by targeting WNT/b-catenin signaling

Feng Liu, Department of Medical Systems Biology, Fudan University, China

WO04-002

Tumour-dependent fibroblast activation: when a good neighbour turns bad

Wei Wu, Utrecht University, Netherlands

WO04-003

Analysis of proteoforms in membrane protein complexes by CID/ETD top-down proteomics

Pierre-Olivier Schmit, Bruker Daltonik, Bremen, Germany, France

W004-004

In silico characterization of the human lipid raft proteome

Michelle Hill, The University of Queensland, Australia

WO04-005

Exosomal EphA2 transmits chemoresistance and predicts pancreatic cancer patient responses to therapy

Tony Hu, Houston Methodist Research Institute/weill Cornell Medical College of Cornell University, United States

WO04-006

Systemic perturbation of keratinocyte homeostasis by genetic loss of the extracellular matrix protein collagen VI Kerstin Thriene, Department of Dermatology, Medical Center - University of Freiburg, Germany

WP06-001

Bio-inspired nanoparticles derived from immune cells: design, characterization, and understanding their

cellular fate by proteomic tools

Claudia Corbo. Houston Methodist Research Institute, Houston, TX. United States

WP06-002

Label-free Proteomic Analysis of Exosomes Secreted by HBV-inducible HepAD38 Cell Line

Xiaofang Jia, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China, China WP06-003

Mining biomarkers for gastric cancer diagnosis by personalized membrane proteomics and multiple reaction

monitoring mass spectrometry

Tai-Du Lin, Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Taiwan

WP06-004

Comprehensive membrane proteome analysis for discovery of novel potential therapeutic targets against HTLV-1 associated disease

Satoshi Muraoka, Cancer Proteomics Group, Genome Center, Japanese Foundation for Cancer Research, Tokyo, Japan WP06-005

A novel TP53 pathway influences the colorectal cancer tumor microenvironment via exosomes

Yulin Sun, National Cancer Center/cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Ching

WP06-006

Inflammatory signaling-derived exosome activate immune response in macrophages

Jian Wang, National Center for Protein Sciences (beijing), Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, China

WP06-007

Quantitative proteomics of fresh tissue-derived secretome reveal the molecular mechanisms of hepatocellular

carcinoma tumorignesis and development

Xiaohua Xing, Mengchao Hepatobiliary Hospital of Fujian Medical University, China

WP07- Stem Cell Proteomics

WP07-001

Functional integrated proteomics identified "glyco-niche" signalings as a regulator of the maintenance and

differentiation of cancer stem cells

Norie Araki, Graduate School of Medical Siences, Kumamoto University, Japan

WP07-002

Proteomic analysis of low folate-induced onco spheroid formations in human colonic adenocarcinoma cells *Wen-Yu Lan, Department of Nutritional Science, Fu Jen Catholic University, Taiwan*

WP07-003

A Study on Effects of sRAGE Secreting Human UCB-MSC in Parkinson's disease Model

Jaesuk Lee, Lee Gil Ya Cancer and Diabetes Center, Gachon University, South Korea

WP07-004

Comprehensive N-glycoproteomics of neural stem cell differentiation

Da Kyeong Park, Korea Basic Science Institute, South Korea

WP07-005

Proteomics identifies cell surface marker for isolation of cardiac progenitors for cell-based therapy in cardiac

infarction

Ghasem Hosseini Salekdeh, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran, Iran WP07-006

Integrative omics reveals N-glycoproteome-wide alterations and their functional network in induced pluripotent stem cells

Putty-Reddy Sudhir, Genomics Research Center, Academia Sinica, Taiwan

WP08- Neurological Disorders and Neuroproteomics

WO08-001

Gene expression and proteomic analysis of cognitive dysfunction in people with remitted Major Depression Klaus Oliver Schubert, The University of Adelaide, Australia

WO08-002

Proteomic dissection of AMPA receptor complexes identifies FRRS1I as a determinant for receptor biogenesis

mutated in severe intellectual disability

Uwe Schulte, University of Freiburg, Institute for Physiology, Germany

WO08-003

Autoantibody response in meningioma patients reveals aberrations in signalling pathways

Shabarni Gupta, Indian Institute of Technology Bombay, India

WO08-004

Proteomic analysis of motor neurons from induced pluripotent stem cells: ALS

Victoria Dardov, Cedars Sinai Medical Center, United States

WO08-005

Analysis of the O-GlcNAcomic profiling of brain tissue in Alzheimer's disease

Wei-Wei Chang, Genomics Research Center, Academia Sinica, Taipei, Taiwan, Taiwan

WP08-001

Proteomics biomarkers from human cerebral cortex for molecular diagnostic and prognostic management of

epilepsy patients

Zakia Zhinwari, King Faisal Specialist Hospital and Research Centre, Saudi Arabia

WP08-002

Full-length TDP-43 Forms Toxic Amyloid Oligomers in Frontotemporal Lobar Dementia-TDP Patients and

Disturbs Amyloid- β Fibrillization

Yun-Ru (Ruby) Chen, Genomics Research Center, Academia Sinica, Taiwan

WP08-003

SCN phosphoproteomic analysis reveals GRK2 as an important modulator of neuronal structure and

cytoskeleton organization

Cheng-Kang Chiang, Ottawa Institute of Systems Biology, University of Ottawa, Canada

WP08-004

Quantitative proteomics of the cytosolic fraction from orbitofrontal cortex of patients with schizophrenia *Gilberto Domont, Federal University of Rio De Janeiro, Brazil*

WP08-005

CSF analysis for protein biomarkers identificatin in patients with CNS lymphoma

Manuel Fuentes, Cancer Research Center. University of Salamanca-csic, Spain WP08-006

WP08-006

Proteomic analysis of vitamin D-regulated proteins in primary cultured OLGs

Jifang Gao, Institution of Biochemistry and Molecular Biology, School of Medicine, Shandong University, China WP08-007

PROTEOMIC INVESTIGATION OF GLIOBLASTOMA MULTIFORME ON THE BASIS OF SVZ INVOLVEMENT

Saicharan Ghantasala, Indian Institute of Technology Bombay, India

WP08-008 An innovative HPLC quantitative method coupled with proteomics analysis to investigate hydrogen sulphide forms in cerebrospinal fluid Viviana Greco, Santa Lucia Foundation, Rome, Italy, Italy WP08-009 Chronic low-dose rate ionising radiation affects the hippocampal phosphoproteome in an ApoE^{-/-}-Alzheimer mouse Stefan J. Kempf, Institute of Radiation Biology, Helmholtz Zentrum München, Munich, Germany WP08-010 Proteomic analysis reveals metabolic alteration of substantia nigra in schizophrenic patients Ayesha Khan, University of Karachi, Pakistan WP08-011 Mapping of Gangliosides from Nine Regions of Mouse Brain by Negative Ion Mode Nano LC/MS Sumin Kim, Chungnam National University, South Korea WP08-012 Chronic exposure to low dose methylmercury induces various proteome changes in different regions of rat's brai Hana-Kin Kona, The Hona Kona Polytechnic University, Hona Kona, China WP08-013 Differential proteome changes in the brains of Arctic Ringed Seal induced by bioaccumulation of methylmercury Samuel Chun-Lap Lo , The Hong Kong Polytechnic University, Hong Kong, China WP08-014 A peptidomic profile of transgenic rat model for tatuopathy:LC-MALDI/MS analysis of cerebrospinal fluid Andrej Kovac, Institute of Neuroimmunology, Slovak Academy of Sciences, Slovakia WP08-015 The mechanism research on GSN remission of MS/EAE: A proteome analysis Shilian Liu, Institute of Biochemistry and Molecular Biology, School of Medicine, Shandong University, China WP08-016 Human platelet lysate (HPL) proteome analysis by nanoLC-MS/MS mass spectrometry: new insights to understand HPL neuroprotective properties Didier Lutomski, Université Paris 13; Sorbonne-Paris-Cité; UMR CNRS 7244, Bobigny, France WP08-017 Estrogen partially reverses proteomic changes induced by excessive stretching of brain endothelial cells Abidali Mohamedali, Macquarie University, Australia WP08-018 A glimpse into the proteomic profile of Rasmussen's Encephalitis Omesan Nair, Division of Chemical & Systems Biology, IIDMM, University of Cape Town, South Africa WP08-019 Toxicoproteomics highlights the role of vimentin in neurotoxicity induced by fipronil N. Monique Paricharttanakul, Environmental Toxicology, Chulabhorn Graduate Institute, Thailand WP08-020 Amyloid beta activated human microglial cells through ER-resident proteins Young Mok Park, Institute for Basic Science, South Korea WP08-021 Differential protein expression in the cortex of mice exposed to the antipsychotic drugs haloperidol and clozapin Cátia Santa, Center for Neuroscience and Cell Biology, Portugal WP08-022 PROTEOMIC ANALYSIS OF MATURATION DEPENDENT ADVERSE EFFECTS OF PARAQUAT EXPOSURE IN 3D RAT **BRAIN CELL CULTURES** Domitille Schvartz, University of Geneva, Switzerland WP08-023 Beta-amyloid induces pathology-related patterns of tau hyperphosphorylation at synaptic terminals via CDK5 activation Hwan-Ching Tai, Department of Chemistry, National Taiwan University, Taiwan WP08-024 Investigation the roles of TDP-43 oligomers in neurodegenerative diseases Tzu-Yu Weng, Academia Sinica, Taiwan WP08-025 Chronic Exposure to Low Doses of Methylmercury Induced Proteome Changes on Polar Bear Brains Yee-Man Melody Wong, The Hong Kong Polytechnic University, Hong Kong, China WP08-026 Imaging Mass Spectrometry (IMS) for the proteomic studies of Experimental Autoimmune Encephalomyelitis (FAF) Mouse Hiroki Yamashita, Doshisha University, Japan

WP09- Pharmacoproteomics and Drug Development

WO01-001

Proteome-wide drug dose-response of prostate cancer cell lines exposed to androgen receptor antagonists by microflow-LC SWATH MS analysis

Christie Hunter, Sciex, United States

WO01-002

Profiling changes in the phosphoproteome of hematopoietic cells in response to a novel class of anti-oncogenic compounds.

Peter Kubiniok, Department of Chemistry, University of Montreal, Canada WO01-003

Cancer proteomics towards precision medicine by molecular targeting drug

Zhiwei Qiao, Division of Rare Cancer Research, National Cancer Center Research Institute, Japan W001-004

Drug Development by Linking Pathophysiology in Cancer to Proteomics

Marko-Varga György, Clinical Protein Science & Imaging Group, BioMedical Center, University of Lund, Lund,

Sweden ; Dept. of Surgery, Tokyo Medical University, Tokyo, Japan, Sweden, Japan WP09-001

A Study on the Intestinal Absorption and Functions of bioactive Peptide

Jing Chen, Shanghai Jiaotong University, China

WP09-002

Phamacoproteomics reveals the pan-Aurora kinase inhibitor tozasertib as a potential therapeutic drug for *Mycn* -amplified neuroblastoma

Chigo Hui Heigh I

Chiao-Hui Hsieh, Institute of Molecular and Cellular Biology, National Taiwan University, Taiwan WP09-003

The Discovery and Potential Application of Bioactive Peptides from Fermented Milk and Probiotics

Wanru Li, Shanghai Jiao Tong University, China

WP09-004

Corosolic Acid, the Active Principle of Actinide chinensis, Inhibits Hepatocellular Carcinoma by Targeting the

VEGFR2/Src/FAK Pathway

Hsuan-Yuan Lin, National Taiwan Normal University, Taiwan

WP09-005

Deciphering the molecular insights of phytoagent deoxyelephantopin against triple negative breast cancer using LC-MS based quantitative proteomics

Jeng-Yuan Shiau, Agricultural Biotechnology Research Center, Academia Sinica, Taiwan

WP09-006

Identification of Novel HLA-A2 Restricted Phosphopeptide for Cancer Vaccine Development

Wang-Chou Sung, National Institute of Infectious Diseases and Vaccinology, NHRI, Taiwan WP09-007

WP09-007

Cellular Thermal Shift Assay (CETSA) enables identification of drug targets of natural products *Peng Yu, Chair of Proteomics and Bioanalytics, Technische Universität München, Germany*

WP09-008

The Discovery and Potential Application of Bioactive Peptides from Fermented Milk and Probiotics Shao-Hui Zhang, School of Agriculture and Biology,SJTU, China

WP10- Chemical Proteomics and Drug Profiling

WO06-001

Target Identification in Living Cells via Mass Spectrometry-based Chemical Proteomics

Xuezhi Bi, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore WO06-002

Comprehensive mass spectrometry analysis identifies a novel therapeutic target in the Wnt signaling pathway Tesshi Yamada, National Cancer Center Research Institute, Japan

WO06-003

The Phosphoproteome of the NCI-60 Cell Line Panel Reveals Markers of Drug Sensitivity

Chen Meng, Lehrstuhl Für Proteomik Und Bioanalytik, Technische Universitat Muenchen, Germany W006-004

Targeted proteomic profiling of enzymes that activate the prodrug PR-104A in human leukaemias

Yongchuan Gu, University of Auckland, New Zealand

WO06-005

Identification of TIFA as a novel therapeutic target in acute myeloid leukemia

Tong-You Wei, Academia Sinica, Taiwan

WP10-001

Drug Target Identification in Multiple Myeloma by Chemical Proteomics

Matthias Bach, University of Würzburg, Rudolf-Virchow-Center, Germany

WP10-002

Matrix Assisted Laser Desorption Ionization-Mass Spectrometry Imaging based analysis of distribution of antitumor agents on tissue

Sungmin Cho, Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, South Korea

WP10-003

Comparative Proteomic Analysis Reveals the Molecular Mechanisms of Mandibular Glands in Two Lines of

Honeybees (Apis mellifera ligustica)

Yue Hao, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, China

WP10-004

Anti-cancer Gold(III) Porphyrins Target Mitochondrial Chaperone Hsp60

Di Hu, State Key Laboratory of Synthetic Chemistry, Chemical Biology Center, The University of Hong Kong, Hong Kong, China

WP10-005

A novel platform for target identification of a natural small molecule and its target protein interaction on tissues using MALDI-MSI analysis

Yonghyo Kim, Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, South Korea

WP11- Metabolomics and Metabolic Disorders

MO04-001

GLOBAL DATA STANDARDIZATION ALGORITHM FOR APPLIED METABOLOMICS

Petr Lokhov, Institute of Biomedical Chemistry, Russia

MO04-002

Systemic proteomic and metabolomic analyses identify crucial roles of the polyol pathway in tumorigenesis Anuli Uzozie, Institute of Molecular Systems Biology, Switzerland

Anuli Uzozie MO04-003

Urine proteomics for evaluation of taking nano-mist sauna effects on the health

Yoshitoshi Hirao, Biofluid Biomarker Center, Niigata University, Japan

MO04-004

Mass spectrometry-based proteomic and metabolic analysis of different cell lines after perturbation of cellular

cholesterol regulation

Peter Blattmann, ETH Zurich, Switzerland

MO04-005

imCorrect: New UHRMS Signal Handling Approach for More Accurate Elemental Composition Determination

Wei-Hung Chang, Academia Sinica, Taiwan

WP11-001

Investigations into the effect of fish oil on enzymes of lipid metabolism: a proteomics approach *Kk Asha, Icar-cift, India*

WP11-002

Study the regulation of bioactive compounds and metabolome of W. chinensis under different plant hormone and stress treatment

Chih-Wei Chang, Academia Sinica, Taiwan

WP11-003

Monitoring phosphatidylcholine and sphingomyelin for concentration normalization in cellular lipidomics

studies using FIA-ESI-MS/MS

Hsi-Chun Chao, School of Pharmacy, National Taiwan University, Taiwan

WP11-004

Development of the absolute quantification method for amino acids

Ya-Wen Chou, Academia Sinica, Taiwan

WP11-005

Epigenetic mechanism investigation in recessive neurometabolic disorder mice.

Jun Gao, Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, China

WP11-006

IMS-DIA-MS Characterisation and IMS-MRM QconCAT Quantitation of the Lipidome and Apolipoprotein

Complements of Obesity and Diabetes Cohorts

David Heywood, Waters, United Kingdom

WP11-007

Metabolomics Profiling of Paired OSCC Using Chemical Isotope Labeling LC-MS

Chia-Wei Hsu, Molecular Medicine Research Center, Chang Gung University, Taiwan

WP11-008

Quantitative Metabolome Analysis of Pleural Effusion with High-Performance Chemical Isotope-Labeling Liquid Chromatography-Mass Spectrometry

Dai Chur Haush Carduate Institute of

Pei-Chun Hsueh, Graduate Institute of Medical Biotechnology and Laboratory Science, Chang Gung University, Taiwa WP11-009

Metabolomic profiling of subgrouping ischemic stroke

Tai-Ming Ko, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan

WP11-010

Monte Carlo Simulation Reveals Reliable Molecular Formula Annotation of Metabolomic Data Obtained by

Accurate Mass Spectrometry

Melody M. T. Lam, Proteomics Core, Faculty of Health Sciences, University of Macau, Macau, China WP11-011

Urinary exposure marker discovery for toxicants using UPLC-LTQ-Orbitrap and three untargeted metabolomics

approaches

Pal-Chi Liao, Department of Environmental and Occupational Health, National Cheng Kung University, Taiwan WP11-012

Discovery of early-stage biomarkers for diabetic nephropathy using LC/MS-based metabolomics

Yu-Ning Lin, Proteomics Core Laboratory, Department of Medical Research, China Medical University, Taiwan WP11-013

Defining the aberrant molecular profiles in liver and adipose tissues of ovariectomized rat model with different n-3 fatty acid interventions

Ming-Hsuan Lin, Master program for clinical pharmacogenomics and pharmacoproteomics, Taipei Medical

University, Taiwan WP11-014

Metabolomics investigation of voriconazole-induced hepatotoxicity

Shin-Lun Wu, School of Pharmacy, National Taiwan University, Taiwan

WP11-015

Using a Targeted Metabolomic Approach to Investigate Plasma Metabolites Associated With Risk of Diabetes Me

Yi-Hao Wu, School of Pharmacy, College of Medicine, National Taiwan University, Taiwan WP11-016

Fragmentation Analysis of Amino acids by High Resolution Tandem MS and High-Energy Collision Dissociation *Pengwei Zhang, Pilot Laboratory, Faculty of Health Sciences, University of Macau, Macau, China*

WO09-001

Quantitative Proteomic Analysis of Flooding and Its Recovery in Soybean Exposed to Aluminum Oxide Nanoparti Setsuko Komatsu, National Institute of Crop Science, Japan

W009-004

Integrated extracellular matrix proteome and organ specific transcriptome decipher cell wall mediated

immunity in plant Kanika Narula, National Institute of Plant Genome Research, India

WO09-005

Phosphoproteomic Analysis of Abscisic Acid Signaling Components in Arabidopsis seed

Anna Amagai, BASE, Tokyo University of Agriculture and Technology, Japan

WP12-001

Quantitation of tonoplast proteins simultaneously regulating inorganic phosphate(Pi) influx-efflux during

varying Pi levels

Debayan Bose, Academia Sinica, Taiwan

WP12-002

The CAP Secretory Pathway is required for CAPE peptide production for the induction of SAR

Ying-Lan Chen, Agricultural Biotechnology Research Center, Academia Sinica, Taiwan

WP12-003

Studying of Plant Novel Systemic Signaling and RNA Trafficking Proteins under Pi Deficiency Using Proteomics Approach

Yet-Ran Chen, Academia Sinica, Taiwan

WP12-004

Proteomic analysis of "Oriental Beauty" oolong tea leaves with different degrees of leafhopper infestation Han-Ju Chien, Institute of Molecular Biology, National Chung Hsing University, Taiwan

WP12-005

Proteometabolomic study illustrates dual role of oxalic acid in anti-nutrient signaling and non-host resistance Sudip Ghosh, National Institute of Plant Genome Research, India

WP12-006

Proteomic Analysis of Bee Pollen from a Natural Forest in Central Taiwan

Ya-Jin Jheng, Genomics Research Center, Academia Sinica, Taiwan

WP12-007

Quantitative Proteomics of Phaeodactylum tricornutum in Acidified Environment

Tai-Yi Jiang, National Taiwan Ocean University, Taiwan

WP12-008

Comparative Proteomics of Chlorella sp. FC2 IITG during Nitrogen-starvation using iTRAQ and MRM based Mass Spectrometry

Vineeta Rai, Indian Institute of Technology Bombay, India WP12-009

Quantitative Proteomics of Phaeodactylum tricornutum in Phosphate Limited Environment

Shiang-Yu Tsai, National Taiwan Ocean University, Taiwan

WP12-010

Proteomic Analysis to Reveal the Calcium Function on Protein Glycosylation in Endoplasmic Reticulum of

Soybean under Flooding and Drought Stresses

Xin Wang, University of Tsukuba, Japan

WP12-011

Proteomic and Transcriptomic Analyses to Reveal the Tolerance Mechanism in Soybean at Initial Flooding Stress Xiaojian Yin, University of Tsukuba, Japan

WP12-012

Comparative phosphoproteomic analysis of dormant and after-ripened seeds of barley

Shinnosuke Ishikawa, Tokyo University of Agriculture and Technology, Japan

TO10-005

Proteomics in Food safety: monitoring competition between Listeria monocytogenes and Lactococcus lactis by

Imaging Mass Spectrometry

Isabella Alloggio, Dipartimento di Medicina Veterinaria, Università degli studi di Milano, Italy

WO09-002

Single-species proteomics, multi-species metaproteomics, trends and opportunities to read-across in

environmental assessment Susana Cristobal, Linköping University, Sweden

WO09-003

Gastric Bypass surgery clearly perturbs the community structure and the functional composition of the

intestinal microhiota

Nico Jehmlich, Helmholtz-centre for Environmental Research - Ufz, Germany

WP13-001

The virulence mechanism mediated by a metalloprotein in Streptococcus pneumoniae

Kun Cao, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, China WP13-002

Comparative proteomic analysis of virulence variations in Xanthomonas campestris pv. campestris strain 17, 11A and P20H

Tao-Shan Chang, Institute of Molecular Biology College of Life Science, National Chung Hsing University, Taiwan WP13-003

Biodegradation of Crude Oil and Diesel by Novel Microorganism, Arthrobacter sp. MWB-30

Young-Ho Chung, Korea Basic Science Institute, South Korea

WP13-004

Isobaric Tagging-Based MS Quantification of HIV-1/gp120/tat in Astrocytoma: Implications for HIV-associated neurodegeneration

Luis Cubano, Biomedical Proteomics Facility, Dept of Microbiology and Immunology, Universidad Central del Caribe, United States

WP13-005

Novel characteristics of highly virulent ribotype 027 - Quantitative and qualitative proteomic analysis of C.

difficile clinically relevant ribotypes

Jiri Dresler, Military Health Institute, Czech Republic

WP13-006

iTRAQ-Based Proteomics Revealed the Formation Mechanism of Drug-Resistant Bacteria

Gao Fei Du, Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, China

WP13-007

A comprehensive proteomics analysis for Streptococcus equi subspecies equi Se071780 to antigen discovery and vaccine development

Hayoung Lee, Drug & Disease Target Team, Korea Basic Science Institute, Daejeon 34133, South Korea WP13-008

Using multiple data analytical approaches to determine the metaproteome of the human gut

Andrew Nel, University of Cape Town, South Africa

WP13-009

Alkaline protease activity and alk protein level in clinical isolates of A.flavus

Mohammed Razeeth Shait Mohammed, Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy EveResearch Institute, India

WP13-010

Metalloproteome study on the iron transportation mechanism in bacteria.

Xiaoyan Yang, Jinan University, China

WP13-011

iTRAQ-Based Proteomics Revealed the Bactericidal Mechanism of Sodium New Houttuyfonate (SNH) against Streptococcus pneumoniae

Xiao-Yan Yang, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Chir WP13-012

In-depth metaproteomic studies of human and mouse gut microbiota

Xu Zhang, University of Ottawa, Canada

WP14- Food and Nutrition and Immuno-Peptidome: Focus on Food Allergies

WO05-001

The Benefits of Hybrid Fragmentation Technologies (EThcD) for Analysing the Immunopeptidome

Albert J Heck, Utrecht University and Netherlands Proteomics Centre, The Netherlands

WO05-002

Digestomics of raw peanut and characterization of gastric-phase released peptides of peanut allergens

Tanja Cirkovic Velickovic, University of Belgrade - Faculty of Chemistry, Serbia

WO05-003

Ultra-Fast Analysis of Allergens using capillary electrophoresis coupled to mass spectrometry and Ultraviolet

Photodissociation

Daniel Lopez-Ferrer, Thermo Fisher Scientific, United States

WO05-004

Characterisation of specificity of different commercial proteases for food hydrolysates

Cristian De Gobba, University of Copenhagen, Denmark

WO05-005

Characterization and Modulation of fish allergens

Pedro Rodrigues, Universidade do Algarve, Campus de Gambelas, Ed. 7, 8005-139 Faro, Portugal

WP14-001

Identification of 2-oxohistidine interacting proteins using E. coli proteome chips

Yun-Huan Chen, Department of Chemistry, National Taiwan University, Taiwan

WP14-002

Quantitative phosphoproteomic characterization of the effect of RN/HAL genotypes on post-mortem energy

metabolism in pigs

Rene Lametsch, University of Copenhagen, Denmark

WP14-003

Proteomic analysis of antique glue on a Stradivari violin

Guo-Chien Li, Department of Chemistry, National Taiwan University, Taiwan

WP14-004

Rapid and Simultaneous Determination of y-oryzanol, Vitamin E Isomers in Brown Rice sample by Ultra-

Performance Liquid Chromatography Mass

Hung-Yu Lin, Institute of Molecular Biology College of Life Science, National Chung Hsing University, Taiwan

WP15- Kidney, Urine and Plasma: Opportunities for Early Diagnosis and Risk Assessment
W010-001
Comparative proteomic analysis of kidney distal convoluted tubule and cortical collecting duct cells following
long-term hormonal stimulation
WO10-002
Targeted MS-based assay of circulating proteoforms related to aging in human plasma
Pingbo Zhang, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
WO10-003
Can proteomics contribute to solving the riddle of Diabetic Nephropathy?
Leena Kerstin Maria Liljedahl, Immunotechnology, Lund University, Sweden
Ouantification of Angiotensin II-Regulated Proteins in Urine of Patients with Polycystic and Chronic Kidney
Diseases by Selected Reaction Monitoring
Ana Konvalinka, Division of Nephrology, University Health Network, University of Toronto, Toronto, Canada
WO10-005
Analysis of the HDL Proteome - Myths and Legends and Reality
Manfred Raida, National University of Singapore, Microbiology and Immunology, Singapore
WP15-001 Proteomic insight reveals elevated levels of albumin in circulating immune complexes in diabetic plasma.
Shweta Bhat, Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory. Pune. India
WP15-002
Profiling of plasma for proteomic signatures of mammographic density
Sanna Byström, Science for Life Laboratory, School of Biotechnology, KTH – Royal Institute of Technology,
Stockholm, Sweden
WP15-003 Noval proteomics-based nineline for identifying predictive Biomarkers of chemotherapy-induced toxicity
Emily Chen. Herbert Irving Comprehensive Cancer Center at Columbia University Medical Center. United States
WP15-004
Human native Peptidome database for Peptidomics studies
Amr Elguoshy, Niigata University, Japan
WP15-005
Unimem, a membrane that can store uninary proteins simply and economically, makes the large-scale storage of clinical samples possible
Youhe Gao, Beijing Normal University, China
WP15-006
Rapid and high-throughput identification of acute hepatic porphyria by SALDI-TOF MS analysis
Han-Chih Ke, Institute of Molecular Biology, National Chung Hsing University, Taiwan
WP15-007 Developing a strategy to identify low-abundance native pentides in plasma
Yoshio Kodera. Center for Disease Proteomics. Kitasato University School of Science, Japan
WP15-008
Preliminary study into the quantitative impact of long-duration space travel on the cosmonaut plasma proteom
Irina Larina, Institution for Biomedical Problems, RAS, Moscow, Russia
WP15-009 Distorming Augusta Of Dat Kidney, Under Malais Asid Tractment Dy CWATU MS Technology
rioconnos Anarysis or nacinaries onder Maleic Acia Treatment by SWATH-IVIS Technology Chao-Yi Lee, Institute of Molecular Biology, National Chung Hsing University, Taiwan
WP15-010
The discovery of HDL-associated protein biomarkers to predict stroke
Hsin-Yi Liao, College of Medicine, China Medical University, Taichung, Taiwan, Taiwan
WP15-011
EVALUATION OF CARDIOVASCULAR SYSTEM STATE BY URINE PROTEOME AFTER MANNED SPACE FLIGHT
Liudmila Dastushkova Institute for Riomedical Problems - Pussian Enderation State Scientific Descereb Center DAS
Liudmila Pastushkova, Institute for Biomedical Problems – Russian Federation State Scientific Research Center RAS, Russia
Liudmila Pastushkova, Institute for Biomedical Problems – Russian Federation State Scientific Research Center RAS, Russia WP15-012
Liudmila Pastushkova, Institute for Biomedical Problems – Russian Federation State Scientific Research Center RAS, Russia WP15-012 Human plasma proteome analysis using meter-long monolithic silica columns with match-between-runs
Liudmila Pastushkova, Institute for Biomedical Problems – Russian Federation State Scientific Research Center RAS, Russia WP15-012 Human plasma proteome analysis using meter-long monolithic silica columns with match-between-runs Yi-Ting Wang, Center for Genomic Medicine, Kyoto University, Japan
Liudmila Pastushkova, Institute for Biomedical Problems – Russian Federation State Scientific Research Center RAS, Russia WP15-012 Human plasma proteome analysis using meter-long monolithic silica columns with match-between-runs Yi-Ting Wang, Center for Genomic Medicine, Kyoto University, Japan WP15-013
Liudmila Pastushkova, Institute for Biomedical Problems – Russian Federation State Scientific Research Center RAS, Russia WP15-012 Human plasma proteome analysis using meter-long monolithic silica columns with match-between-runs Yi-Ting Wang, Center for Genomic Medicine, Kyoto University, Japan WP15-013 Comparative Proteomic Analysis of Human Calcium Oxalate and Calcium Phosphate Kidney Stone Matrices
Liudmila Pastushkova, Institute for Biomedical Problems – Russian Federation State Scientific Research Center RAS, Russia WP15-012 Human plasma proteome analysis using meter-long monolithic silica columns with match-between-runs Yi-Ting Wang, Center for Genomic Medicine, Kyoto University, Japan WP15-013 Comparative Proteomic Analysis of Human Calcium Oxalate and Calcium Phosphate Kidney Stone Matrices Frank Witzmann, Indiana University School of Medicine, United States WP15-014
Liudmila Pastushkova, Institute for Biomedical Problems – Russian Federation State Scientific Research Center RAS, Russia WP15-012 Human plasma proteome analysis using meter-long monolithic silica columns with match-between-runs Yi-Ting Wang, Center for Genomic Medicine, Kyoto University, Japan WP15-013 Comparative Proteomic Analysis of Human Calcium Oxalate and Calcium Phosphate Kidney Stone Matrices Frank Witzmann, Indiana University School of Medicine, United States WP15-014 Proteomics of urine from healthy volunteers by SWATH-MS
Liudmila Pastushkova, Institute for Biomedical Problems – Russian Federation State Scientific Research Center RAS, Russia WP15-012 Human plasma proteome analysis using meter-long monolithic silica columns with match-between-runs Yi-Ting Wang, Center for Genomic Medicine, Kyoto University, Japan WP15-013 Comparative Proteomic Analysis of Human Calcium Oxalate and Calcium Phosphate Kidney Stone Matrices Frank Witzmann, Indiana University School of Medicine, United States WP15-014 Proteomics of urine from healthy volunteers by SWATH-MS Bo Xu, Niigata University Biofluid Biomaker Center (BB-C), Japan
Liudmila Pastushkova, Institute for Biomedical Problems – Russian Federation State Scientific Research Center RAS, Russia WP15-012 Human plasma proteome analysis using meter-long monolithic silica columns with match-between-runs Yi-Ting Wang, Center for Genomic Medicine, Kyoto University, Japan WP15-013 Comparative Proteomic Analysis of Human Calcium Oxalate and Calcium Phosphate Kidney Stone Matrices Frank Witzmann, Indiana University School of Medicine, United States WP15-014 Proteomics of urine from healthy volunteers by SWATH-MS Bo Xu, Niigata University Biofluid Biomaker Center (BB-C), Japan WP15-015
Liudmila Pastushkova, Institute for Biomedical Problems – Russian Federation State Scientific Research Center RAS, Russia WP15-012 Human plasma proteome analysis using meter-long monolithic silica columns with match-between-runs Yi-Ting Wang, Center for Genomic Medicine, Kyoto University, Japan WP15-013 Comparative Proteomic Analysis of Human Calcium Oxalate and Calcium Phosphate Kidney Stone Matrices Frank Witzmann, Indiana University School of Medicine, United States WP15-014 Proteomics of urine from healthy volunteers by SWATH-MS Bo Xu, Niigata University Biofluid Biomaker Center (BB-C), Japan WP15-015 Proteomics of Diabetic Nephropathy Glomerulus
Liudmila Pastushkova, Institute for Biomedical Problems – Russian Federation State Scientific Research Center RAS, Russia WP15-012 Human plasma proteome analysis using meter-long monolithic silica columns with match-between-runs Yi-Ting Wang, Center for Genomic Medicine, Kyoto University, Japan WP15-013 Comparative Proteomic Analysis of Human Calcium Oxalate and Calcium Phosphate Kidney Stone Matrices Frank Witzmann, Indiana University School of Medicine, United States WP15-014 Proteomics of urine from healthy volunteers by SWATH-MS Bo Xu, Niigata University Biofluid Biomaker Center (BB-C), Japan WP15-015 Proteomics of Diabetic Nephropathy Glomerulus Keiko Yamamoto, Biofluid Biomarker Center/Niigata University, Japan
Liudmila Pastushkova, Institute for Biomedical Problems – Russian Federation State Scientific Research Center RAS, Russia WP15-012 Human plasma proteome analysis using meter-long monolithic silica columns with match-between-runs Yi-Ting Wang, Center for Genomic Medicine, Kyoto University, Japan WP15-013 Comparative Proteomic Analysis of Human Calcium Oxalate and Calcium Phosphate Kidney Stone Matrices Frank Witzmann, Indiana University School of Medicine, United States WP15-014 Proteomics of urine from healthy volunteers by SWATH-MS Bo Xu, Niigata University Biofluid Biomaker Center (BB-C), Japan WP15-015 Proteomics of Diabetic Nephropathy Glomerulus Keiko Yamamoto, Biofluid Biomaker Center/ Niigata University, Japan WP15-016
Liudmila Pastushkova, Institute for Biomedical Problems – Russian Federation State Scientific Research Center RAS, Russia WP15-012 Human plasma proteome analysis using meter-long monolithic silica columns with match-between-runs Yi-Ting Wang, Center for Genomic Medicine, Kyoto University, Japan WP15-013 Comparative Proteomic Analysis of Human Calcium Oxalate and Calcium Phosphate Kidney Stone Matrices Frank Witzmann, Indiana University School of Medicine, United States WP15-014 Proteomics of urine from healthy volunteers by SWATH-MS Bo Xu, Niigata University Biofluid Biomaker Center (BB-C), Japan WP15-015 Proteomics of Diabetic Nephropathy Glomerulus Keiko Yamamoto, Biofluid Biomaker Center/ Niigata University, Japan WP15-016 Application of High Throughput Urinary Proteomic Strategy in the Diagnosis of Acute Appendicitis with Confusable Acute Abdomens
Liudmila Pastushkova, Institute for Biomedical Problems – Russian Federation State Scientific Research Center RAS, Russia WP15-012 Human plasma proteome analysis using meter-long monolithic silica columns with match-between-runs Yi-Ting Wang, Center for Genomic Medicine, Kyoto University, Japan WP15-013 Comparative Proteomic Analysis of Human Calcium Oxalate and Calcium Phosphate Kidney Stone Matrices Frank Witzmann, Indiana University School of Medicine, United States WP15-014 Proteomics of urine from healthy volunteers by SWATH-MS Bo Xu, Niigata University Biofluid Biomaker Center (BB-C), Japan WP15-015 Proteomics of Diabetic Nephropathy Glomerulus Keiko Yamamoto, Biofluid Biomarker Center/ Niigata University, Japan WP15-016 Application of High Throughput Urinary Proteomic Strategy in the Diagnosis of Acute Appendicitis with Confusable Acute Abdomens Yinghua Zhao, National Center for Protein Sciences · Beijing, China

WP16- Late Breaking Abstracts

WP16-001

Biological characteristic of human enterovirus species A in human nucleolin transgenic mice

Yi-Chen Lin, Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Taiwan

WP16-002

Zika virus is not alone: proteomics associates a bovine-like viral diarrhea virus to microcephaly Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

WP16-003

Lymph node metastasis of primary endometrial cancers: associated proteins revealed by maldi imaging

Parul Mittal, The University of Adelaide, Australia

WP16-004

Human SRMAtlas: A resource of targeted assays to quantify the complete human proteome

Ulrike Kusebauch, Institute for Systems Biology, Seattle, United States

WP16-005

Low microgram amount protein samples coupled with novel polymers for TAILS terminomics yield efficient enrichments utilizing precipitation with organic solvents

Nestor Solis, Centre for Blood Research, 2350 Health Sciences Mall Life Sciences Centre, University of British Columbia, Vancouver, Canada

WP16-006

Identification of Cofilin-1 Induces G0/G1 Arrest and Autophagy in Angiotensin-(1-7)-treated Human Aortic Endothelial Cells from iTRAQ Quantitative Proteomics

Wan-Yu Lo, Cardiovascular & Translational Medicine Laboratory, Department of Biotechnology, Hung Kuang University